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Abstract. The appearance of an object could be continuously changing
during tracking, thereby being not independent identically distributed.
A good discriminative tracker often needs a large number of training
samples to fit the underlying data distribution, which is impractical for
visual tracking. In this paper, we present a new discriminative tracker
via the landmark-based inductive model (Lim) that is non-parametric
and makes no specific assumption about the sample distribution. With
an undirected graph representation of samples, the Lim locally approx-
imates the soft label of each sample by a linear combination of labels
on its nearby landmarks. It is able to effectively propagate a limited
amount of initial labels to a large amount of unlabeled samples. To this
end, we introduce a local landmarks approximation method to compute
the cross-similarity matrix between the whole data and landmarks. And
a soft label prediction function incorporating the graph Laplacian reg-
ularizer is used to diffuse the known labels to all the unlabeled vertices
in the graph, which explicitly considers the local geometrical structure
of all samples. Tracking is then carried out within a Bayesian inference
framework where the soft label prediction value is used to construct the
observation model. Both qualitative and quantitative evaluations on 65
challenging image sequences including the benchmark dataset and other
public sequences demonstrate that the proposed algorithm outperforms
the state-of-the-art methods.

1 Introduction

An appearance model is one of the most critical prerequisites for successful
visual tracking. Designing an effective appearance model is still a challenging task
due to appearance variations caused by background clutter, object deformation,
partial occlusions, and illumination changes, etc. Numerous tracking algorithms
have been proposed to address this issue [1], and existing tracking algorithms
can be roughly categorized as either generative [2–7] or discriminative [8–15]
approaches. Generative methods build an object representation, and then search
for the region most similar to the object. However, generative models do not take
into account background information. Discriminative methods train an online
binary classifier to adaptively separate the object from the background, which
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are more robust against appearance variations of an object. In this paper, we
focus on the discriminative tracking method.

In visual tracking applications, the samples obtained by the tracker are drawn
from an unknown underlying data distribution. The appearance of an object
could be continuously changing and thus it is impossible to be independent and
identically distributed (i.i.d). A good discriminative tracker often needs a large
number of labeled samples to adequately fit the real data distribution [16]. This
is because if the dimensionality of the data is large compared to the number
of the samples, then many statistical learning methods predict overfitting due
to the “curse of dimensionality”. However, precisely labeled samples only come
from the first frame during tracking, i.e., the number of labeled samples is very
small. To acquire more labeled samples, in most existing discriminative tracking
approaches, the current tracking result is used to extract positive samples and
the surrounding regions are used to extract negative samples. Once the tracker
location is not precise, the assigned labels may be noisy. Over time the accumu-
lation of errors can degrade the classifier and cause drift. This situation makes
us wonder: with a very small number of labeled samples, whether we can design a
new discriminative tracker which makes no specific assumption about the sample
distribution.

In this paper, we take full advantage of the geometric structure of the data
and thus present a new discriminative tracking approach with the landmark-
based inductive model (Lim). The Lim locally approximates the soft label of
each sample by a linear combination of labels on its nearby landmarks. It is
able to effectively propagate a limited amount of initial labels to a large amount
of unlabeled samples, matching the needs of discriminative trackers. Under the
graph representation of samples, the local landmarks approximation is employed
to design a sparse and nonnegative adjacency matrix characterizing relationship
among all samples. Based on the Nesterov’s gradient projection algorithm, an
efficient numerical algorithm is developed to solve the problem of the local land-
marks approximation with guaranteed quadratic convergence. Furthermore, the
object function of the label prediction provides a promising paradigm for mod-
eling the geometrical structures of samples via Laplacian regularizer. Preserving
the local manifold structure of samples can make our tracker have more discrim-
inating power to handle appearance changes.

Specifically, the proposed method treats both labeled and unlabeled sam-
ples as vertices in a graph and builds edges which are weighted by the affinities
(similarities) between the corresponding sample pairs. For each new frame, can-
didates predicted by the particle filter are considered as unlabeled samples and
utilized to constitute a new graph representation together with the collected
samples stored in the sample pool. A small number of landmarks obtained from
the entire sample space enable nonparametric regression that calculates the soft
label of each sample as a locally weighted average of labels on landmarks. Track-
ing is carried out within a Bayesian inference framework where the soft label
prediction value is used to construct the observation model. A candidate with
the highest classification score is considered as the tracking result. To alleviate
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the drift problem, once the tracked object is located, the labels of the newly
collected samples are assigned according to the classification score of the cur-
rent tracking results, in which no self-labeling is involved. The proposed tracker
adapts to drastic appearance variations, as validated in our experiments.

1.1 Related work

Discriminative tracking has received wide attention for its adaptive ability to
handle appearance changes. The essential component of discriminative trackers
is the classifier updating. Straightforward appearance update with newly ob-
tained results could result in incorrectly labeled training samples and degrade
the models gradually with drifts. Grabner et al. [9] employed an online semi-
supervised learning framework to train a classifier which is less susceptible to
drift but not adaptive enough to handle fast appearance changes. Babenko et al.
[11] integrated multiple instance learning (MIL) into online boosting algorith-
m to alleviate the drift problem. In the MIL tracking, the classifier is updated
with positive and negative bags rather than individual labeled examples. Kalal
et al. [13] developed a semi-supervised learning approach (i.e., P-N learning) to
train a binary classifier with structured unlabeled data. Zhang and Maaten [17]
developed a structure-preserving object tracker that learns spatial constraints
between objects using an online structured SVM algorithm to improve the per-
formance of single-object or multi-object tracking. Wu et al. [18] addressed visual
tracking by learning a suitable metric matrix in the feature space of local sparse
codes to effectively capture appearance variations.

Different from the schemes of the classifier updating in [9, 11, 13, 18], in which
candidates are not used to train the classifier, and therefore the class labels
of them are assigned by the previous classifier. In our tracker, for each new
frame, candidates are considered as unlabeled samples and utilized to constitute
a new graph representation to update the current classifier. Explicitly taking
into account the local manifold structure of labeled and unlabeled samples, we
introduce a soft label propagation method defined over the graph, which has
more discriminating power. In addition, once the tracked object is located, the
discriminative appearance models are online updated in the manner of both
supervised and unsupervised which makes our tracker more stable and adaptive
to appearance changes. More details are discussed in Sect. 3.

Recently, researchers utilize the graph-based discriminative learning to con-
struct the object appearance model for visual tracking. With the 2nd-order tensor
representation, Gao et al. [19] designed two graphs for characterizing the intrinsic
local geometrical structure of the tensor space. Based on the least square support
vector machine, Li et al. [20] exploited a hypergraph propagation method to cap-
ture the contextual information on samples, which further improves the tracking
accuracy. Kumar and Vleeschouwer [21] constructed a number of distinct graphs
(i.e., spatiotemporal, appearance and exclusion) to capture the spatio-temporal
and the appearance information. Then, they formulated the multi-object track-
ing as a consistent labeling problem in the associated graphs.
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Our method differs from [19, 20] both in the graph construction and the la-
bel propagation method. Methods in [19, 20] construct the graph representation
using kNN whose computational cost is expensive. In contrast, employing local
landmarks approximation, we design a new form of the adjacency matrix char-
acterizing relationship between all samples. The total time complexity scales
linearly with the number of samples. More importantly, our method is an induc-
tive model which can be used to infer the labels of unseen data (i.e., candidates).
Only a few samples are selected and used to learn a new discriminative model.
The label of each sample can be interpreted as the weighted combination of the
labels on landmarks. Graph Laplacian is incorporated into the object function
of inductive learning as a regularizer to preserve the local geometrical structure
of samples.

2 Landmark-based inductive model

2.1 Problem description

Suppose that we have l labeled samples {(xi,yi)}li=1 and u unlabeled samples
{xi}l+ui=l+1, where xi ∈ Rd , and yi ∈ Rc is the label vector. Denote X =

{x1, x2, · · · , xn} ∈ Rd×n and Yl = {y1,y2, · · · ,yl} ∈ Rl×c, where n = l + u. If
xi belongs to the kth class (1 ≤ k ≤ c), the kth entry in yi is 1 and all the
other entries are 0’s. In this paper, the data X is represented by the undirected
graph G = {X,E}, where the set of vertices is X = {xi} and the set of edges
is E = {eij}, where eij denotes the similarity between xi and xj . Define a soft
label prediction (i.e., classification) function f : Rd → Rc. A crucial component
of our method is the estimation of a weighted graph G from X. Then, the soft
label of any sample can be inferred using G and known labels Yl.

The time complexity of traditional graph-based semi-supervised learning
methods is usually O(n3) with respect to the data size n, because n × n k-
ernel matrix (e.g., multiplication or inverse) is calculated in inferring the label
prediction. Full-size label prediction is infeasible when n is large, the work of [22]
inspired us to exploit the idea of landmark samples. To accomplish the soft label
prediction, we employ an economical and practical prediction function expressed
as

f(x) =

m∑
k=1

K(x,dk)ak. (1)

The idea of this formulation is that the label of each sample can be interpreted
as the locally weighted average of variables ak’s defined on m landmarks [22,
23]. As a trade-off between computational efficiency and effectiveness, in this
paper, k-means algorithm is used to select the centers as the set of landmarks
D = {dk}mk=1 ∈ Rd×m.

Eq. (1) is deemed as a inductive model, because it can diffuse the label of
landmarks to all unlabeled samples, as discussed in Sect. 2.4. The above model
can be written in a matrix form

f = HA, (2)
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where f = [f(x1), f(x2), · · · , f(xn)]> ∈ Rn×c is the landmark-based label pre-
diction function on all samples.A = [f(d1), f(d2), · · · , f(dm)]> = [A1,A2, · · · ,Ac] ∈
Rm×c denotes the label of landmarks dk’s. H ∈ Rn×m is the cross-similarity ma-
trix between the whole data X and landmarks dk,

Hik = K(xi,dk) > 0, 1 ≤ i ≤ n, 1 ≤ k ≤ m.

In what follows, we will elaborate how to effectively solve A and H.

2.2 Solving optimal H

Typically, we may employ Gaussian kernel or Epanechnikov quadratic kernel to
compute H. However, how to choose appropriate kernel bandwidths is difficult.
Instead of adopting the predefined kernel, we learn an optimal H by considering
the geometric structure information between labeled and unlabeled samples. We
reconstruct xi as a combination of its s closest landmarks in the feature space. In
this work, we set s = 10. Similar to locality-constrained linear coding (LLC) [24],
a local landmarks approximation method is proposed to optimize the coefficient
vector hi ∈ Rs:

min
hi∈Rs

g(hi) =
1

2

∥∥∥∥xi − s∑
j=1

djhi

∥∥∥∥2

,

s.t. 1>hi = 1, hi ≥ 0

(3)

where s entries of the vector hi correspond to s coefficients contributed by s
nearest landmarks. The constraint 1>hi = 1 follows the shift-invariant require-
ments. The main difference between LLC and our method is that we incorporate
inequality constraints (i.e., non-negative constraints) into the object function as
we require the similarity measure to be a positive value. Therefore we need
to develop a different optimization algorithm to solve Eq. (3). In this section,
Nesterov’s gradient projection (NGP) method [25], a first-order optimization
procedure, is employed to solve the constrained optimization problem Eq. (3). A
key step of NGP is how to efficiently project a vector hi onto the corresponding
constraint set C.

Denote Qβ,v(hi) = g(v) +∇g(v)>(hi − v) + β
2 ‖hi − v‖

2
2, as the first-order

Taylor expansion of g(hi) at v with the squared Euclidean distance between hi
and v as a regularization term. Here ∇g(v) is the gradient of g(hi) at v. We can
easily obtain

min
hi∈C

Qβ,v(hi) = ΠC

(
v − 1

β
∇g(v)

)
, (4)

where ΠC(v) = minv′∈C ‖v − v′‖22 is the Euclidean projection of v onto C [26].
The projection operator ΠC(·) has been implemented efficiently in O(s log s).

From Eq. (4), the solution of Eq. (3) can be obtained by generating a sequence

{h(t)
i } at v(t) = h

(t)
i + αt

(
h

(t)
i − h

(t−1)
i

)
, i.e.,

h
(t+1)
i = ΠC

(
v(t) − 1

βt
∇g(v(t))

)
= min

hi∈C
Qβt,v(t)(hi). (5)
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In NGP, choosing proper parameters βt and αt is also significant for the con-
vergence property. Similar to [25], we set αt = (δt−1 − 1)/δt with δt =

(
1 +√

1 + 4δ2
t−1

)
/2, δ0 = 0 and δ1 = 1. βt is selected by finding the smallest non-

negative integer j such that g(hi) ≤ Qβt,v(t)(hi) with βt = 2jβt−1.
After getting the optimal weight vector hi, we set Hij′ = hi, where j′ is the

indices corresponding to the s nearest landmarks and the cardinality |j′| = s. For
the rest entries of Hi, we set 0’s. Apparently, Hij = 0 when landmark dj is far
away from xi andHij 6= 0 is only for the s closest landmarks of xi. In contrast to
weights defined by kernel function (e.g., Gaussian kernel), the local landmarks
approximation method is able to provides optimized and sparser weights, as
validated in our experiments.

2.3 Solving label prediction matrix A

Note that the adjacency matrix W ∈ Rn×n between all samples encountered in
practice usually have low numerical-rank compared with the matrix size [27]. We
consider whether we can construct a nonnegative and empirically sparse graph
adjacency matrix W with the nonnegative and sparse H ∈ Rn×m introduced in
Sect. 2.2. Intuitively, we can design the adjacency matrix W to be a low-rank
form W = HH>, (6)

where the inner product is regarded as the metric to measure the adjacent weight
between samples. Eq. (6) implies that if two samples are correlative (i.e., Wij >
0), they share at least one landmark, otherwise Wij = 0. W defined in Eq. (6)
naturally preserves some good properties ( e.g., sparseness and nonnegativeness).

To compute the label prediction matrix A, we exploit the following optimiza-
tion framework [22]: minL(fl,yl) + η‖f‖G . (7)

Here L(·, ·) is an empirical loss function, which requires that the prediction f
should be consistent with the known class labels. η is a positive regularization
parameter. fl ∈ Rl×c is the sub-matrix corresponding to the labeled samples in
f ∈ Rn×c. Discriminative models take tracking as a binary classification task
to separate the object from its surrounding background. In this case, c = 2.
‖f‖G = tr(f>Lf) enforces the smoothness of f with regard to the manifold
structure of the graph, where L ∈ Rn×n is the graph-based regularization matrix.
Usually L = Σ −W , where Σ = diag(W1) is the vertex degree matrix of G.

With the design of W , Laplacian graph regularization can be approximated
as f>Lf = f>(diag(HH>1)−HH>)f , (8)

where nonnegative W guarantees the positive semi-definite (PSD) property of
L. Keeping PSD L is important to ensure that the graph regularizer f>Lf is
convex.

By plugging f = HA into Eq. (7) and choosing the loss function L(·, ·) as the
L2-norm, the convex differentiable object function for solving label prediction
matrix A can be formulated as
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min
A
L(A) =

η

2
tr
(
(HA)>L(HA)

)
+ ‖HlA− Yl‖2F . (9)

Here, Hl ∈ Rl×m is the rows in H that corresponds to the labeled samples,
and L is defined in Eq. (8). By setting the derivative w.r.t. A to zero, we easily
obtain the globally optimal solution to Eq. (9):

A∗ =
(
H>l Hl + ηH>LH

)−1
H>l Yl. (10)

2.4 Soft label propagation

Through applying the inductive model Eq. (2), we are able to predict the soft
label for any sample xi (unlabeled training samples or novel test samples) as

f̂(xi) = max
k∈{1,2}

H(xi) Ak

1>HAk
, (11)

where {Ak}ck=1 ∈ Rm×1 is the column vector of A, and H(xi) ∈ R1×m rep-
resents the weight between x and landmarks dk’s. Specifically, if xi belongs to
unlabeled training samples, H(xi) = Hi where Hi denotes the i-th row of H,
i = l + 1, · · · , n. If xi is a novel test sample, we need to compute the vector Hi

as H(xi) described in Sect. 2.2, then update H ∈ R(n+1)×m, i.e., H ← [H;Hi].
After deriving the soft label prediction (i.e., classification) of each sample, the
classification score can be utilized as the similarity measure for tracking. In the
next section, we will elaborate the application of the proposed landmark-based
inductive model in tracking.

3 Lim tracker

In our tracking framework, the object is represented by five different image
patches inside the object region. These five image patches correspond to the
five parts of an object, respectively, as exemplified in Fig. 1. Therefore, image
patches corresponding to the certain part of all samples are able to construct a
sub-sample set X(τ), τ = 1, 2, · · · , 5. Each sub-sample set X(τ) is used to train
a single classifier f (τ) using the inductive model predefined in Eq. (2). The final
tracking result can be determined by the sum of the classification scores of the
five image patches inside the object region:

SC =

5∑
τ=1

ωτf
(τ), (12)

where ωτ is the weight of τ -th image patch (
∑5
τ=1 ωτ = 1 and ωτ = 0.2 in the

experiments). This part-based scheme could potentially alleviate the drift caused
by partial occlusions.

To initialize the classifier in the first frame, we draw positive and negative
samples around the target location. Suppose the target is labeled manually,
perturbation (e.g., shifting 1 or 2 pixels) around the object is performed for
collecting Np positive samples XNp . Similarly, Nn negative samples XNn are
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Fig. 1. Object representation using five different
image patches. The candidate is normalized to
the same size (24× 24 in our experiment), each
image patch is with 12× 12.
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Fig. 2. Overall performance comparisons of pre-
cision plot and success rate. The performance s-
core for each tracker is shown in the legend (best
viewed on high-resolution display).

collected far away from the located object (e.g., within an annular region a few
pixels away from the object). X1 = XNp

⋃
XNn is the initialized labeled sample

set. K-means algorithm is exploited to select the centers as the set of landmarks
D. Using labeled samples and landmarks, we can train a prior classifier via the
Lim.

For each new frame, candidates predicted by the particle filter are considered

as unlabeled samples X̂. According to Eq. (11), we can get the classification
score of each candidate. A candidate with higher classification score indicates
that it is more likely to be generated from the target class. The most likely
candidate is considered as the tracking result for this frame. Then, perturbation
(i.e., the same scheme in the first frame) around the tracking result is performed
for collecting sample set XC . If the classification score of the located object
is higher than the predefined threshold ε (i.e., the current tracking result is
reliable), samples in XC are regarded as labeled ones, otherwise regarded as
unlabeled ones. That is, samples are collected in the manner of both supervised
and unsupervised, and thus the stability and adaptivity in tracking objects of
changing appearance are preserved.

3.1 Update the classifier

We construct a sample pool XP and a sample buffer pool X ′. We only keep T
collected sample set XC to constitute the sample buffer pool. Every T frames,
X ′ is utilized to update XP . After updating the sample pool, we will leave X ′

blank and then reconfigure it. In our experiment, we set the sample pool capacity
as Θ(XP ) which denotes the number of samples in the sample pool. If the total
number of samples in the sample pool is larger than Θ(XP ), samples in XP will
be randomly replaced withX ′. To reduce the risk of visual drift, we always retain
the samples X1 obtained from the first frame in the sample pool. In other words,
XP = [X1;X ′]. Similarly, landmarks also should be updated using the sample
pool every T frames. Specifically, we first implement k-means in the current
sample poolXP to obtain a new landmarks set. Then, the updated landmarks set
is gained by carrying out the k-means algorithm again using the new landmarks
set and the previous landmarks set, which is able to better characterize the
samples distribution.
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3.2 Bayesian state inference

Object tracking can be considered as a Bayesian inference task in a Markov
model with hidden state variables. Given the observation set of the object
O1:t = {o1,o2, · · · ,ot}, the optimal state st of the tracked object is obtained
by the maximum a posteriori estimation p

(
sit
∣∣O1:t

)
, where sit indicates the state

of the i-th sample. The posterior probability p
(
st
∣∣O1:t

)
is formulated by Bayes

theorem as p
(
st
∣∣O1:t

)
∝ p(ot|st)

∫
p
(
st|st−1

)
p
(
st−1

∣∣O1:t−1

)
dst−1. This infer-

ence is governed by the dynamic model p
(
st|st−1

)
which models the temporal

correlation of the tracking results in consecutive frames, and by the observation
model p(ot|st) which estimates the likelihood of observing ot at state st.

We apply an affine image warp to model the object motion between two
consecutive frames. The state transition distribution p

(
st|st−1

)
is modeled by

Brownian motion, i.e., p
(
st|st−1

)
= N (st; st−1,

∑
), where

∑
is a diagonal

covariance matrix whose diagonal elements are the corresponding variances of
respective parameters. The observation model p(ot|st) is defined as

p(ot|st) ∝ SCt, (13)

where SCt = f̂
(
x(t)

)
is the classification score at time t based on Eq. (11).

4 Experiments

We run our tracker on 65 challenging image sequences including the benchmark
dataset [28] and 14 public sequences widely used in recent literatures. The to-
tal number of frames on the 65 sequences is more than 30000. We evaluate
the proposed tracker against 11 state-of-the-art tracking algorithms including
ONNDL [29], RET [30], CT [31], VTD [4], MIL [11], SCM [32], Struck [12],
TLD [13], ASLSA [2], LSST [3] and SPT [14]. For fair comparisons, the source
codes are provided by the benchmark with the same parameters except ON-
NDL, RET, LSST and SPT whose parameters of the particle filter are set as
same as our tracker. As discussed in [28], we also annotate the attributes of 14
public sequences used in our paper. The proposed approach was implemented in
MATLAB on a Intel Core2 2.5 GHz processor with 4GB RAM. Our tracker is
about 2 frame/sec for all experiments. No code optimization is performed. The
MATLAB source code and experimental results of 12 trackers are available at
http://iitlab.bit.edu.cn/mcislab/~wuyuwei/.

4.1 Experimental setup

Note that we fix the parameters of our tracker for all sequences to demonstrate its
robustness and stability. The number of particles is 400 and the state transition
matrix is [8, 8, 0.01, 0, 0.005, 0] in the particle filter. We resize the object image
to 24 × 24 pixels. Gray scale information and HOG feature are extracted from
each object region. In the first frame, Np = 20 positive samples and Nn = 100
negative samples are used to initialize the classifier. The regularization parameter
expressed in Eq. (10) is set to η = 0.02. The predefined threshold of classification
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score ε is set as 0.3. Given the object location at current frame, if SC ≥ ε, 2
positive samples and 50 negative samples are used for the supervised learning.
If SC < ε, the tracking result is treated as the unreliable one and 100 unlabeled
sample are utilized for the unsupervised learning. The sample pool capacity
Θ(XP ) is set to 310, in which the number of positive, negative and unlabeled
samples are 50, 160 and 100, respectively. The number of landmarks is set to 30
empirically. As a trade-off between computational efficiency and effectiveness,
the landmarks set D is updated every T = 10 frames.

4.2 Quantitative comparisons

Evaluation criteria To measure the tracking performance, the precision plot
[11] is adopted to measure the overall tracking performance. It shows the per-
centage of frames whose estimated location is within the given threshold dis-
tance of the ground truth. More accurate trackers have higher precision at lower
thresholds. If a tracker loses the object, it is difficult to reach a higher precision.
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Fig. 3. Attribute-based performance analysis in success rate. The performance score
of each tracker is shown in the legend (best viewed on high-resolution display).

The tracking overlap rate is also used for quantitative comparisons. It is

defined by score = area(ROIT
⋂
ROIG)

area(ROIT
⋃
ROIG) , where ROIT is the tracking bounding

box and ROIG is the ground truth. This can be used to evaluate the success
rate of any tracking approach. The tracking result is considered as a success
when the score is greater than the given threshold ts. However, it may not be
fair or representative for tracker evaluation using one success rate value at a
specific threshold (e.g., ts = 0.5). Therefore, we count the number of successful
frames at the thresholds varied from 0 to 1 and plot the success rate curve for our
tracker and the compared trackers. The area under curve (AUC) of each success
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rate plot is employed to rank the tracking algorithms. More robust trackers have
higher success rate at higher thresholds.

Overall performance The overall performance for 12 trackers is summarized
by the precision plot and success rate on 65 sequence, as shown in Fig. 2. For
precision plots, we use the results at error threshold of 20 for ranking these
12 trackers. The AUC score for each tracker is shown in the legend. In success
rate, our tracker is 2.8% above the SCM, and outperforms the Struck by 3.1%
in precision plot. SCM, ASLSA and LSST trackers also perform well in success
rate, which suggests sparse representations are effective models to account for
appearance change, especially for occlusion. Overall, our tracker outperforms
other 11 trackers both in precision plot and success rate. Good performance of
our method can be attributed to the fact that the classifier generalizes well on
the new data from a limited number of training samples. That is, our method
has excellent generalization ability. In addition, the local manifold structure of
samples makes the classifier have more discriminating power.

Attribute-based performance Apart from summarizing the performance on
the whole sequences, we also construct 11 subsets corresponding to different
attributes to report specific challenging conditions. Fig. 3 shows the attribute-
based performance analysis in success rate. Attributes OCC, IPR, OPR and SV
occur more frequently than others on 65 sequences. Due to space limitations,
in the following we mainly analyze the success rate and precision plot for these
four attributes mentioned above and use other attributes as auxiliary.
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Fig. 4. The overall performance of two baseline algorithms and our method on 65
sequences is presented for comparison in terms of precision and success rate.

On the OCC subset, SCM, ASLSA, LSST and our method get better re-
sults than others. The results suggest that local image representations are more
effective than holistic templates in dealing with occlusions. On the SV subset,
we see that trackers with affine motion models (e.g., our method, SCM, ASLSA
and LSST) are able to cope with scale variation better than others that only
consider translational motion (e.g., Struck and MIL). On the OPR and IPR
subsets, besides our tracker, the SCM and ASLSA trackers is also able to obtain
the satisfactory results. The performance of SCM and ASLSA trackers can be
attributed to the efficient spare representations of local image patches. Simi-
larly, on the FM and MB subsets, Struck, SPT, TLD and our trackers perform
favorably against other methods, which implies a good online learning algorithm
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facilitates trackers by updating the classifiers to adapt to appearance changes of
the object.

Effectiveness of the optimal H To evaluate the contribution of the optimal
H described in Sect. 2.2 to the overall performance of our tracker, we compute
the Nadaraya-Watson kernel regression [33] for comparison. It assigns weights

smoothly withHik = Kσ(xi,dk)∑m
j=1Kσ(xi,dj)

, 1 ≤ i ≤ n, 1 ≤ j ≤ m. Two kernel functions

are exploited in the Nadaraya-Watson kernel regression to measure the cross-
similarity matrix between the whole data X and landmarks dk’s. We first adopt
Gaussian kernel for the kernel regression and the corresponding tracking method
is called as the BaseLine1. Epanechnikov quadratic kernel is also employed for
the kernel regression, whose corresponding tracking method is referred to as the
BaseLine2 tracker. We use a more robust way to get σ which uses the nearest
neighborhood size s of xi to replace σ, i.e., σ(xi) = ‖xi − ds‖2, where ds is
the sth closest landmarks of xi. The only difference between baseline algorithms
and Ours is that baseline algorithms utilize the predefined kernel functions to
solve cross-similarity matrix H while Ours takes advantage of local landmarks
approximation method to optimizeH. The overall tracking performance of these
baseline algorithms and our method on the 65 challenging sequences is presented
in Fig. 4. On the whole, our method obtains more accurate tracking results than
baseline algorithms.

Effectiveness of the prediction matrix A We design another two baseline
algorithms to evaluate the effectiveness of the soft label prediction matrix A
described in Sect. 2.3. In the BaseLine3, we do not consider the Laplacian graph
regularizer in Eq. (9), i.e., η = 0, and thus A becomes the least-squares solution.
In the BaseLine4, we directly construct the adjacent matrix W using the kNN
algorithm instead of W = HH>. If xi is among the k-neighbors of xj or xj is
among the k-neighbors of xi, Wij = 1, otherwise, Wij = 0. The overall tracking
performance on the benchmark is illustrated in Fig. 4. Surprisingly, even without
Laplacian graph regularizer, the BaseLine3 produces the precision score of 0.587
and the success score of 0.509, outperforming the ONNDL tracker, which implies
that the success is due to the framework of the landmark-based inductive model.
The overall performance can be further improved using our scheme of solving A
described in Sect. 2.3.

4.3 Qualitative comparisons

Fig. 5 shows the qualitative tracking results of the 12 trackers over nine rep-
resentative video sequences. In the dragonbaby, Basketball and Freeman4 se-
quences are used to evaluate whether our method is able to handle significant
pose changes. The dragonbaby, VTD, RET, ASLSA, SPT, SCM and TLD track-
ers are easy to drift at the beginning of the sequence when the object turns
around (e.g., ]28). The LSST tracker and our methods are able to track the ob-
ject well although with some errors in some frames. SCM and ASLSA trackers
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SPT CT OursVTD MIL LSST SCM TLD ONNDL Struck ASLSA SPT

Fig. 5. Qualitative tracking results of the 12 trackers over 9 representative video se-
quences (i.e., ‘Dragonbaby”, “Basketball”, “Freeman4”, “Trellis”, “Singer2”, “shak-
ing”,“Liquor”, “Woman” and “SUV”) that are respectively aligned from left to right
and from up to down (best viewed on high-resolution display).

do not perform well in this sequence as the drastic appearance changes due to
shape information are not effectively accounted for the sparse representation. In
the Basketball sequence, we see that SPT, CT, RET and SCM trackers are easy
to drift at the beginning of the sequence (e.g., ]60). The TLD, ONNDL, Struck
and MIL algorithms drift to another player as the appearance between players
in the same team is very similar (e.g., ]473). VTD, ASLSA and our methods
are able to track the whole sequence successfully. In the Freeman4 sequence, all
the trackers except our method perform poorly since the partial occlusions ap-
pear frequently. SMC method employs a fixed histogram intersection function to
compute the similarity of histograms between the candidate and the template,
thereby leading to lacking the ability to adapt to scene changes.

The Woman, SUV and Liquor sequences are utilized to test if our methods
can tackle the occlusions. In the Woman sequence, the CT, SCM, MIL, VTD,
TLD and ONNDL trackers fail to capture the object after the woman walk-
s behind white car (e.g., ]127). The appearance model fuses more background
interference due to an occlusion, which significantly influences the samples on-
line update of the MIL, TLD, ASLSA and RET trackers. The LSST tracker
fails gradually over time (e.g., ]380). In contrast, our method, SPT and Struck
trackers achieve stable performance in the entire sequence. For the SUV se-
quence, most of the trackers drift when the long-term occlusion happens. In
comparisons, our tracker and SCM have relatively lower center location errors
and higher success rate. Although LSST and ASLSA trackers take partial oc-
clusion into account, the results are not satisfied. The RET and TLD trackers
are also achieve the satisfying results. In the Liquor sequence, the object suffers
from background clutter besides heavy occlusions for many times. The CT, MIL,
LSST and ASLSA trackers drift first when the occlusion occurs (e.g., ]361). Al-
though the TLD, VTD, SPT, RET and Struck trackers obtain slightly better
results than SCM and ONNDL trackers, they lose the object after several oc-
clusions. Overall, our method achieves both the lowest tracking error and the
highest overlap rate.

In the Shaking, Singer2 and Trellis sequences, the objects undergo drastic
illumination changes. From the Shaking sequence, we see that the Struck, LSST,
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TLD, CT and RET trackers drift from the object quickly when the spotlight
blinks suddenly (e.g., ]110). SCM, VTD, ONNDL and our trackers can success-
fully track the surfer throughout the sequence with relatively accurate sizes of
the bounding box. SPT, MIL, and ASLSA methods are also able to track the
object in this sequence but with lower success rate than our method. In the
Singer2 sequence, the contrast between the foreground and the background is
very low besides illumination change. Most trackers drift away at the beginning
of the sequence when the stage light changes drastically (e.g., ]59). The VTD
tracker performs slightly better as the edge feature is less sensitive to illumina-
tion change. In contrast, our method succeeds in tracking the object accurately.
In Trellis sequence, a man walks under a trellis. Suffering from large changes in
environmental illumination and head pose, the CT, TLD, MIL, SPT and LSST
trackers drift gradually. In contrast, RET, ONNDL, ASLSA, SCM, Struck and
our trackers obtain promising results.

5 Conclusion

In this paper, we have proposed a landmark-based inductive model for tracking.
The idea of our method is that the label of each sample can be interpreted as
the weighted combination of labels on landmarks. Through solving the cross-
similarity matrix H and the label prediction matrix A, our model is able to
effectively propagate the landmarks’ labels to all the unlabeled candidates. The
Lim tracker is able to effectively fit the underlying data distribution to handle ap-
pearance changes. A candidate with the highest classification score is considered
as the tracking result. In addition, explicitly considering the local geometrical
structure of the samples, the graph-based regularizer is incorporated into the lim
tracker, which makes our method have better discriminating power and thus is
more adaptive to handle appearance changes. Compared with 11 state-of-the-art
tracking methods on 65 challenging image sequences, the Lim tracker is more
robust to illumination changes, pose variations and partial occlusions, etc. Ex-
perimental results have demonstrated the effectiveness and robustness of the
proposed tracker.
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